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SUMMARY
Technology has revolutionized our ability to track animals across the globe, significantly advancing our un-
derstanding of animal movement [1, 2]. Technological and logistical challenges, however, have led to non-
migratory movements that fall outside of the territory/home range paradigm, receiving less attention. This
may have resulted in awidespread underestimation of the frequency and spatial scale at which animals either
move outside of their territories and home ranges or adopt altogether different space-use strategies. We
used a breeding-range-wide automated radio-telemetry system to trackmovements in amigratory songbird,
the Kirtland’s warbler (Setophaga kirtlandii). By attaching radio tags on the wintering grounds and relocating
the same individuals on the breeding grounds, we were able to sample the population without regard to their
eventual breeding status or space-use strategy. We found that a surprising proportion of breeders and most
non-breeders made long-distance (5–77 km) movements during the breeding season while conspecifics re-
mained within their small territories. Movement frequency peaked during the nestling and fledgling periods,
indicating that both breeders and non-breeders were likely prospecting to inform dispersal. A literature re-
view revealed that Kirtland’s warblers moved farther than most species in absolute distances and farther
than all other species relative to normal daily movements. We argue that similarly long-distance movements
likely exist in many other species but have gone undetected because of technological limitations, research
biases, and logistical challenges. Underestimation of the scale of these poorly understood life history behav-
iors has important implications for the ecology, evolution, and conservation of animals.
RESULTS

Non-breeders More Likely to Move Long Distances
Of the 63 individuals that remained alive during the 2018 and

2019 breeding seasons, 20 (32%; 20_, 0\) did not breed and

43 (68%) bred. Non-breeders (12 of 20 [60%]; 12_, 0\) were

significantly more likely to make long-distance movements

than breeders (4 of 37 [11%]; 2_, 2\; p % 0.001). Three individ-

uals (2_ non-breeders and 1_ breeder) made long-distance

movements in 2017 but were not included in the above calcula-

tions because we do not have accurate estimates of breeding

status in 2017 (STAR Methods).
Long-Distance Movements by Breeders and Non-
breeders
Radio-tagged breeders were found 0–200 m from their nests

while breeding, and most remained within 0–500 m of their nests

after breeding. However, 6–23 days (x = 11 ± 3.1 days) after their

nests fledged young (n = 2) or were depredated (n = 3), five

breeders (3_, 2\), moved 6–46 km to spatially disjunct breeding

areas (Video S1; Table 1). All 20 (20_, 0\) non-breeders exhibited

territorial behaviors at multiple successive locations 200–

1,000 m apart rather than at a single location. After 11–58 days
Cur
(x = 33 ± 3.7 days), 14 non-breeders moved 5–77 km to spatially

disjunct breeding areas (Video S1; Table 1).

Only one individual bred after making long-distance move-

ments. He moved 25 km 3 days after his nest failed and then re-

turned to his territory to nest with his original mate. Of the remain-

ing 18 individuals, we re-sighted 15 (83%) after they ceased

long-distance movements, and none paired or bred. The

breeding status of the three remaining individuals was not defin-

itively confirmed, but they ceased movements on July 10, 18,

and 20, all after the species’ latest known breeding attempt in

Michigan (July 2) [3].
Movements Peaked during the Nestling and Fledgling
Periods
From 2017 to 2019, the mean dates for the incubation, nestling,

and fledgling periods were June 5 ± 0.4 days, June 20 ± 0.4 days,

and June 28 ± 0.4 days (n = 308 nests). On average, non-

breeders began long-distance movements on June 28 ±

3.6 days, and breeders began movements 1 week later (July

5 ± 5.4 days). Regardless of breeding status, 93% and 85% of

long-distance movements occurred after the beginning of the

nestling and fledgling periods, respectively (Figure 1). On
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Table 1. Summary of Long-DistanceMovements by Breeders and

Non-breeders

Status

No.

Movements

Individual Distances

(km)

Total Distances

(km)

Breeder 3 ± 1.1 (1–7) 20 ± 2.6 (6–46) 59 ± 31.7 (10–183)

Non-

breeder

3 ± 0.9 (1–13) 19 ± 2.1 (5–77) 65 ± 15.6 (5–166)

Combined 3 ± 0.7 19 ± 1.7 63 ± 13.7

Mean (±SE) number of long-distance (R5 km) movements, distances of

individual movements, and total distance moved by Kirtland’s warblers

during the breeding season. Data shown are for breeders (n = 5), non-

breeders (n = 14), and breeders and non-breeders combined (n = 19).

Ranges are in parentheses.
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average, non-breeders ceased long-distance movements on

July 6 ± 2.1 days, and breeders ceased movements 5 days later.

Most Movements Occurred at Night
Of the 20 movements for which we could definitely determine

time of day, 13 (65%) occurred at night, beginning 112 ±

21.6 min after sunset and 28 ± 21.4 min after nautical dusk,

and 7 (35%) began during the day (x = 92 ± 41.8 min after sun-

rise). Assuming a straight flight, flight durations indicated a flight

speed of 17 ± 3.3 km/h (range: 0.6–47 km/h). An additional 23

movements most likely either began or ended between sunset

and sunrise, suggesting that at least 36 of 62 (58%) movements

took place at night.

Kirtland’s Warblers Moved Farther Than Other Species
We found that the average and maximum distances moved by

Kirtland’s warblers were larger than the median values moved

by other groups. Relative to their normal daily movements, Kirt-

land’s warblers moved farther than all other species reviewed

(Figure 2; Tables S1 and S2).

DISCUSSION

We discovered a long-distance alternative space-use strategy

that was previously undescribed in Kirtland’s warblers and

occurred at a large spatial scale compared to a diverse group

of birds and mammals. Discovery of these movements was

only possible because of our ability to radio-tag birds on the

wintering grounds and relocate the same individuals on the

breeding grounds, which allowed us to track individuals regard-

less of their eventual breeding status or space-use strategy. All

radio-tagged birds initially adopted a space-use strategy typical

of most songbirds. However, 11% of breeders and 60% of non-

breeders abandoned these common space-use strategies and

began moving long distances (5–77 km), often at night, between

spatially disjunct breeding areas. Our evidence suggests that

Kirtland’s warblers made these long-distance movements to

inform future dispersal decisions, but we first explore several

alternative hypotheses.

Why Move Long Distances during the Breeding Season?
Regardless of breeding status, individuals may have moved long

distances to find areas with more food or fewer predators to
2 Current Biology 30, 1–7, October 19, 2020
enhance survival during the breeding season or subsequent

molting period (late July–September) [3]. Several lines of evi-

dence make this unlikely. First, starvation of nestlings has never

been observed in Kirtland’s warblers [4], suggesting that

breeding areas contain enough food to sustain adults and young.

Second, monthly survival probability during the breeding season

is high (0.96 ±0.005SE) [5], suggesting that predation on adults is

not a major source of mortality. Finally, many individuals moved

back and forth from the area they originally settled, suggesting

it was adequate in terms of food availability and predation risk.

If movements were not motivated by enhancing survival, indi-

viduals may have moved long distances to pursue immediate

breeding opportunities and/or prospect for information about

habitat quality. Previous work has documented that some birds

disperse long distances after a breeding attempt to renest else-

where within the same season [6]. Additionally, non-breeders

have frequently been shown to breed when openings are exper-

imentally or naturally created [7, 8]. Thus, pursuit of immediate

breeding opportunities is a plausible motivation for both

breeders and non-breeders. However, many of the movements

did not take place until after the latest recorded date of renesting,

and only one individual nested after moving long distances. The

fact that both breeders and non-breeders did not nest after mov-

ing long distances does not preclude seeking immediate

breeding opportunities as a motivation but instead probably

only indicates that opportunities to find mates outside of the set-

tlement period are rare.

Although individuals were not successful in finding new nest-

ing opportunities after moving long distances, we cannot rule

out the possibility that males were seeking extra-pair copula-

tions. Extra-pair paternity is widespread in songbirds [9] but

has not been examined in Kirtland’s warblers. However, floaters

in most other species rarely sire offspring [10, 11], and if the pri-

mary motivation of these movements was to pursue extra-pair

copulations, movement frequency should have peaked just prior

to egg laying, when most females would have been fertile [12].

The fact that long-distancemovements peakedduring the nest-

ling and fledgling periods and ceased prior to the end of the fledg-

ling period suggests that individuals were prospecting for public

information about conspecific reproductive success to inform

dispersal the following season. Studies documenting the use of

public information have shown that prospecting peaks during

the nestling and fledging periods because the feeding and pres-

ence of dependent young is an obvious signal of reproductive

success [13, 14]. Although breeders and non-breeders often initi-

ated long-distance movements at night, afterward they occupied

breeding habitat during the day and therefore had the opportunity

to gather public information throughobservation of these conspic-

uous behaviors. However, they may also have gathered personal

or social information. Kirtland’s warblers have been shown to use

social information to inform habitat selection at the edge of their

range in Wisconsin [15]. Future experimental manipulations could

disentangle the types of information used [16–18].

Ultimately, our tracking devices did not last long enough to

allow us to determine whether individuals dispersed to areas

visited the previous year. This makes it impossible to be certain

that individuals used information gathered during prospecting

trips to inform later dispersal decisions. Nonetheless, after ruling

out plausible alternatives and documenting a tight temporal



Figure 1. Seasonal Timing of Long-Distance Movements

Proportion of Kirtland’s warblers (Setophaga kirtlandii) making long-distance movements in relation to when the rest of the population (n = 308) was in the in-

cubation, nestling, or fledgling periods of the nesting cycle. Video S1 shows movements by individual birds.
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correlation between movement frequency and the availability of

public information, we conclude that these long-distance move-

ments were most likely prospecting trips.

Finding and Navigating to Distant Breeding Areas
The flight durations of some individuals implied direct flights,

although in other cases indicated either implausibly slow flights

(<1 km/h) or that individuals had to search for breeding areas.

We do not know what cues individuals used to find breeding

areas, but movements often took place at night when auditory

and visual location cues would have been limited. Some individ-

uals may have known where breeding areas were from previous

visitation, but most individuals that made long-distance move-

ments were in their first potential breeding season and therefore

had few opportunities for previous exploration. Regardless of

previous knowledge, individuals needed a method to orient

and navigate. Most long-distance movements began shortly af-

ter nautical dusk, similar to both the onset of non-migratory land-

scape-scale movements by birds during stopover [19, 20] and

migratory flights in Kirtland’s warblers (N.W.C. and P.P.M., un-

published data) and other songbirds [21, 22]. Birds are known

to use celestial cues to navigate [23, 24], and many stars are

visible after nautical dusk, suggesting that Kirtland’s warblers

may have used a star compass. In addition to the availability of

navigational cues, nocturnal migration reduces energetic costs,

risk of dehydration, and risk of predation [21]. At distances

observed in this study, however, lowered predation risk is the

most plausible factor in determining the timing ofmovement [19].

Are Long-Distance Movements Unique to Kirtland’s
Warblers?
Movement distances in our literature review varied by nearly five

orders of magnitude, with maximum alternate movement dis-

tances ranging from 70 m to more than 2,800 km (Table S2).
Several large-bodied birds and mammals moved farther than

Kirtland’s warblers during forays or alternative space-use strate-

gies, but all had much larger normal daily movements, resulting

in small relative movement distances. Thus, the distances

moved by Kirtland’s warblers stood out as unusually long in

terms of both absolute and relative distances. Two possible con-

clusions can be drawn; either these long-distance movements

are unique to Kirtland’s warblers or similar movements have

gone undetected in other species.

Kirtland’s warblers depend on fragmented and ephemeral

stands of jack pine forest to breed. Dispersal and prospecting

are more likely to evolve when resources show predictable

spatiotemporal variation [25–28]. Thus, it is possible that long-

distance prospecting evolved in Kirtland’s warblers because of

their habitat specialization. However, the fragmented nature

and limited geographic extent of their breeding habitat is also

what allowed us to use automated telemetry to study their long-

distance movements. Similarly, Ward [29] was able to document

one of the other longest distance examples of prospecting

behavior because the rare and fragmented nature of yellow-

headed blackbird (Xanthocephalus xanthocephalus) breeding

marshes allowed for re-sighting at distant locations. Thus, it re-

mains unclear whether long-distance prospecting is more likely

to evolve under these circumstances or merely easier to detect.

Nonetheless, many other birds and mammals are capable of

long-distance travel and depend on resources that are found in

fragmented or ephemeral habitats. Regardless of the purpose,

we argue that long-distancemovementswithin the breeding sea-

son are more common than currently recognized.

Why Have Long-Distance Movements Been
Underestimated?
Long-distance forays and alternative space-use strategies

may have gone undetected because of limitations in tracking
Current Biology 30, 1–7, October 19, 2020 3



Figure 2. Comparison of Relative Movement Distances across Taxa

Relative average and maximum distances moved by animals during forays or alternative space-use strategies. Closed circles show data points for individual

species. Boxes show median ± inter-quartile range (IQR), whiskers show 1.53 IQR, and all values above or below whiskers are statistical outliers. Note the two

breaks in the x axis. Stars indicate values for Kirtland’s warblers. Tables S1 and S2 show summary and raw data.

ll

Please cite this article in press as: Cooper and Marra, Hidden Long-Distance Movements by a Migratory Bird, Current Biology (2020), https://doi.org/
10.1016/j.cub.2020.07.056

Report
technology and a bias toward studying adults and breeders

rather than juveniles and non-breeders. Most (59%) studies in

our review used handheld radio-telemetry or direct observations

to track animals, which are strongly biased toward the detection

of short-distance movements and require an active observer,

limiting temporal resolution. Correspondingly, several studies re-

ported not being able to find radio-tagged individuals despite

extensive searches, suggesting movement outside of the study

area [30–33]. The use of trackingmethodswith a higher probabil-

ity of detecting long-distance movements was less frequent

(36%), but they were used in all studies that documented longer

absolute movement distances than Kirtland’s warblers. Even

when these technologies are used, high cost and logistical chal-

lenges often result in small sample sizes. Moreover, the low po-

sition acquisition rates required to increase battery life on smaller

devices can result in missing relatively rare movements.

Together, this suggests that many studies in our database would

have failed to detect long-distance movements if they were

present.

In addition to technological limitations, the study of foray

behavior and alternative space-use strategies has suffered

from a research bias and logistical challenges. Several factors

have led to a severe bias toward tracking reproductive adults

[34], but most alternative space-use strategies in our literature

review were carried out by non-breeders. Regardless of

breeding status, individuals exhibiting alternative space-use

strategies are difficult to capture and track. Such individuals

may respond less aggressively to capture techniques that take

advantage of territorial behaviors, and they are often secretive,

not physically identifiable by plumage or markings, and may

move over long distances. Thus, many studies of alternative
4 Current Biology 30, 1–7, October 19, 2020
space use have relied upon incidental captures, resulting in small

sample sizes. Together, we believe that these technological lim-

itations, research biases, and logistical challenges have resulted

in a widespread underreporting of the frequency and scale of

forays and alternative space-use strategies. With continued ad-

vances in tracking technology [35, 36], researchers will likely

detect similar and perhaps even longer non-migratory move-

ments in other species in the future.

Implications
Underestimating the frequency and spatial scale of forays and

alternative space-use strategies has implications for the ecology

and conservation of animals. Broadly speaking, if animals move

at larger scales than currently understood, managers may not

protect all necessary locations and habitat types [37–41]. Further

implications of underestimating the frequency and spatial scale

of forays and alternative space-use strategies depend on the

purpose of the movements and the identity of the individuals

moving.

Forays and alternative space-use strategies frequently involve

prospecting, and yet prospecting is poorly understood, with little

attention devoted to its spatial scale [34]. The prospecting trips

observed in our study were as large as many dispersal events

in birds [42, 43] and mammals [44], suggesting that long-dis-

tance dispersal may be commonly informed through prior visita-

tion. Understanding the frequency of long-distance prospecting

is important because failure to account for informed dispersal in

population models results in inaccurate predictions [45–47].

Because dispersal has such profound effects on a species’ pop-

ulation dynamics, potential for range expansion, and extinction

risk [47–49], it is critical thatmodelsmore realistically incorporate



ll

Please cite this article in press as: Cooper and Marra, Hidden Long-Distance Movements by a Migratory Bird, Current Biology (2020), https://doi.org/
10.1016/j.cub.2020.07.056

Report
dispersal and the behaviors that inform it, if their aim is to predict

how animals will respond to large-scale environmental changes,

such as global climate change.

Our literature review showed that non-breeders frequently

exhibit foray behaviors and adopt alternative space-use strate-

gies, and non-breeders often make up a substantial portion of

avian populations (30%–70%) [11, 50, 51]. Similar estimates

are not available for mammals, but non-breeders impact avian

and mammalian population dynamics [51–53], sexual selection

[11], and conservation [50, 54, 55]. Despite their importance, in-

formation about non-breeders is rarely available. Monitoring pro-

grams often only count breeders or do not determine breeding

status, and even when they attempt to do so, accurately census-

ing non-breeders is difficult. For example, recent estimates from

a marking and re-sighting effort suggested that only 8% of male

Kirtland’s warblers were non-breeders [3], much lower than our

estimate (32%). Our method of randomly radio-tagging individ-

uals on the wintering grounds and later relocating them on the

breeding grounds likely provides a more accurate estimate but

will be difficult to replicate in most other species until tracking

technology improves. Devising improvedmethods for estimating

the non-breeding portion of animal populations should therefore

be a priority.
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Data and Code Availability
Original data and code have been deposited to Mendeley Data: http://dx.doi.org/10.17632/ycnx37zj4b.2.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used mist nets and conspecific song playback to capture 163 Kirtland’s Warblers (137_, 26\) on their wintering grounds on Cat

Island, The Bahamas (24.33� N, 75.45� W). All handling of birds was approved by a Smithsonian Institute for Animal Care and Use

Committee Permit to P.P.M.

METHOD DETAILS

Study species and sites
Kirtland’s Warblers winter in scrub forests in The Bahamas and Turks and Caicos from October through late April or early May [61].

Nearly all of the population (�97%) breeds in young (5-15 year old) jack pine forests in the northern Lower Peninsula of Michigan,

USA, with small populations in Michigan’s Upper Peninsula, Wisconsin, and Ontario, Canada [3]. Kirtland’s Warblers are usually sin-

gle-brooded, but if nests fail early in the season, they will often build replacement nests, with the latest known nest initiation date in

Michigan being July 2 [3]. Individuals initiate their annual molt sometime between late July and their departure for the wintering

grounds in late September and October [3, 62].

Following control of Brown-headed cowbird (Molothrus ater) populations and creation of breeding habitat, the population recovered

from 167 males in 1987 to over 2300 males in 2015 and was subsequently removed from the endangered species list in 2019. Current

breeding habitat in Michigan consists of 15,000 ha of jack pine forest spread across the northern Lower Peninsula in spatially disjunct

areas located within a habitat matrix consisting of various other forest types, agricultural lands, and rural settlements (Video S1).

Field Methods
In March and April 2017-2019, we used mist nets and conspecific song playback to capture 163 Kirtland’s Warblers (137 _, 26 \) on

their wintering grounds on Cat Island, The Bahamas (24.33� N, 75.45� W). We sexed each individual using plumage characteristics

[63] and then affixed three plastic color bands and one USGS aluminum band. We attached a 0.35 g coded radio tag (model =

NTQBW-2, LotekWireless) using a modified leg-loop harness [64]. Tags weighed on average 2.4 ± 0.17% (SD) of bodymass (Range:

2.0%–3.3%). Each tag emitted a coded pulse every 29.3 (2017-2018) or 24.1 s (2019) that allowed for individual identification by
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telemetry receivers [35]. Estimated battery life was a minimum of 140-165 d depending on the year and even the earliest deployed

tags lasted at least through the end of July and often into September.

In Michigan, we relocated 99 (61% total; 87_ [64%], 12\ [46%]) of the 163 Kirtland’s Warblers (137_, 26\) radio-tagged in The

Bahamas from 2017-2019. We removed radio-tags from a total of 6 breeding birds in late May or early June of 2018 and 2019. In

addition, shortly after arrival toMichigan, two individuals were depredated, one individual likely died due to a trematode parasite (Col-

lyriclum faba), and three individuals likely moved outside of the main breeding range or had their tags fall off or fail. These 12 individ-

uals were removed from the analysis when calculating the proportion of breeders and non-breeders that made long-distance

movements.

Each season, we erected 11 (2017-2018) or 12 (2019) solar-powered, automated radio towers at all major breeding areas found in

the northern Lower Peninsula of Michigan (Video S1). Each of the two, directional 9-element Yagi antennas (Laird Connectivity)

attached to the towers had a maximum detection range of approximately 15-20 km [35]. However, maximum detection range is

only achieved when individuals are up in the air column well above the forest canopy, which likely only occurred when birds arrived

or departed from a breeding area. As individuals arrived at a breeding area, towers would usually detect them for at least 90 s and up

to a fewminutes before they dropped down into the breeding habitat and out of detection range. Simultaneous observation of radio-

tagged birds using handheld and automated telemetry indicated that the detection range of the towers was at best 2 km and usually

much lower (< 500 m) while birds were in breeding habitat.

When radio-tagged individuals were first detected by a tower, we systematically searched the surrounding area by vehicle and

foot, using car mounted or handheld telemetry. We also carried out systematic searches in the few breeding areas not well covered

by the towers at least every three days inMay and June, but oftenmore frequently. Once a bird was located, we attempted to re-sight

it at least once per week, from arrival through the end of the breeding season to determine territorial, pairing, and breeding status

through direct observation. We attempted to find nests of all radio-tagged individuals and monitored nests at least once every three

days until completion.

Interpreting Movement Data
To estimate the frequency, timing, and starting and ending locations of long-distance movements, we used the ‘‘motus’’

package [57] in Program R [60] to manually inspect detection data from the towers for all radio-tagged individuals and

also used any detections acquired through handheld telemetry that were then followed by direct observations in the field.

We defined a long-distance movement as any movement between two towers (min = 6.3 km). Movements detected by

handheld telemetry R 5 km were also included. Most long-distance movements (47 of 62; 76%) were first detected only

through automated telemetry, while the remaining 15 (24%) were detected through handheld telemetry followed by direct

observation. Detections at a tower were considered valid when at least three consecutive detections were recorded [35].

Of the 47 movements detected only through automated telemetry, 9 (19%) consisted of fewer than 10 consecutive detec-

tions (median = 4, interquartile range [IQR] = 3-7), while the remaining 38 movements (81%) had 10 or more consecutive

detections (median = 47, IQR = 21-132, range = 10-6367).

For each long-distance movement, we attempted to confirm that the individual involved occupied breeding habitat after it moved.

Occupancy of breeding habitat was confirmed in 46 of 62 (74%) cases either through direct observations or large numbers of consec-

utive detections during daylight hours. For the remaining 16 (26%)movements, occupancy of breeding habitat was considered highly

likely given the number and timing of detections, but in some cases could have represented birds simply passing through a breeding

area with a tower to other breeding areas or to locations without breeding habitat. Ten of 19 (53%) individuals that made long-dis-

tance movements returned at least once to their original breeding area and 5 (26%) resettled at their original breeding area before

ceasing long-distance movements. Detection histories for some individuals included detections in quick succession (i.e., within

0.5-2 hr) at two or more towers and were therefore indicative of individuals flying through one breeding area on the way to another

breeding area. Accordingly, these movements were treated as a single movement from the area of departure to the area of eventual

settlement, rather than as multiple independent movements.

Literature Review
We used the ‘‘Web of Science Core Collections’’ database to find studies of foray behavior and alternative space-use strategies in

birds and mammals. We defined foray behavior as round-trip movement outside of the territory or home range. We defined an alter-

native space-use strategy as any other movement exhibited by a portion of the overall population that differed in pattern and spatial

scale from the majority of the population. To search for studies of foray behavior we used different combinations of the search terms:

‘‘foray,’’ ‘‘excursion,’’ ‘‘excursional,’’ ‘‘extra-territorial,’’ ‘‘extraterritorial,’’ ‘‘extra territorial,’’ ‘‘off-territory,’’ ‘‘off territory’’ and ‘‘pro-

specting.’’ To search for studies on alternative space-use strategies, we used combinations of the search terms: ‘‘alternate,’’ ‘‘alter-

native,’’ ‘‘space use,’’ ‘‘non-territorial,’’ ‘‘nonterritorial,’’ ‘‘transient,’’ and ‘‘floater.’’ We then inspected all studies and appropriate ref-

erences cited therein to extract information related to the scale of normal daily movements (e.g., territory size, home range size, or

foraging distance), average and maximum scale of movement for forays or alternative space-use strategies, the age, sex, and

breeding status of individuals involved, season of study, type of tracking technology used, proposed purpose of the movements,

and sample sizes. Six species appear twice in the database. This occurred when we found two studies on the same species that

met our search criteria, or when studies found that space use differed significantly by sex.
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Study design and information reported varied widely, but foray studies typically reported territory or home range size as a measure

of distance moved during normal daily activity, and distance traveled from a central location (e.g., nest, burrow, territory center) as a

measure of foray distance. Studies of alternative space-use strategies generally reported the typical territory or home range size and

either the home range size of individuals exhibiting the alternative space-use strategy, or the distance they traveled from a central

location. When typical territory or home range size was not reported, we attempted to find these values from the same study pop-

ulation, or at least from the same regions using other published sources. Some species (e.g., Yellow-headed Blackbirds, Xanthoce-

phalus xanthocephalus) do not hold all-purpose territories and forage primarily outside of their small nesting territories. For these spe-

cies, we used information about foraging distance away from the territory to estimate distancemoved during normal daily activity. For

all studies in which territory or home range sizes were reported, we assumed the areas used were roughly circular and calculated the

radius. This allowed for direct comparison between studies reporting areas used and those reporting distances traveled. This re-

sulted in three distances for each species; distance moved during normal daily activities, and the average and maximum distance

moved during foray or alternative space-use strategy (hereafter average and maximum alternate movement distance). In 10 cases,

the average alternate distance moved was not reported, and only maximum values were available. In an additional 10 cases, the

maximum values were not reported, and we therefore estimated the maximum by adding the reported measure of dispersion to

the estimate of central tendency.

We found 34 examples of foray behavior (20 birds, 14 mammals) and 37 examples of alternative space-use strategies (31 birds, 6

mammals), across 65 species (47 birds, 18 terrestrial mammals; Tables S1 and S2). Sample sizes were generally small (median = 12,

IQR = 5-21, range: 1-141). Ground based radio-telemetry was used in 37 of 71 (52%) cases, followed by transmitting GPS or satellite

tags (n = 11, 15%), archival GPS tags (n = 9, 13%), direct observations (n = 6, 8%), aerial radio-telemetry (n = 6, 8%), automated radio-

telemetry (n = 1, 1%), and passive integrated responder (PIT) tags (n = 1, 1%). Irrespective of period of the annual cycle, extra-ter-

ritorial forays weremost often carried out by individuals known to be breeders (n = 24, 71%), and less frequently by both breeders and

non-breeders (n = 5, 15%), non-breeders alone (n = 3, 9%) or individuals of unknown breeding status (n = 2, 6%). In contrast, alter-

native space-use strategies were most commonly carried out by non-breeders (n = 29, 78%), followed by individuals of unknown

breeding status (n = 7, 19%) and breeders (n = 1, 3%). Regardless of movement type, prospecting was suggested as the motivation

behind the movements in most cases (n = 44 of 71, 62%), followed by mating and extra-pair copulations (n = 21, 30%), foraging (n =

18, 25%), and unknown (n = 5, 7%; percentages total > 100% because of multiple proposed purposes).

Across all taxa, the normal daily and alternate movements varied by nearly five orders of magnitude. We first compared absolute

distances moved between Kirtland’s Warblers and all other songbirds, and then made limited comparisons with other groups. To

make meaningful comparisons across our diverse dataset, we then put all distances on a relative scale by dividing the average

and maximum alternate distances moved by the distance moved during normal daily activities. The distributions of normal and alter-

nate distances moved were highly right-skewed, and therefore we report medians and interquartile ranges. For all other variables we

report means ± 1 SE.

QUANTIFICATION AND STATISTICAL ANALYSIS

Due to small sample sizes, we used Fisher’s Exact Test to investigate differences in both breeding status and the likelihood of long-

distance movement by breeding status . Movement distances were estimated by calculating great circle distances between consec-

utive observations or tower locations using the ‘‘geodist’’ package [56], and we animatedmovement data using the ‘‘moveVis’’ pack-

age [58] in Program R [60]. To relate the timing of movements to the stage of nesting in the surrounding Kirtland’s Warbler population,

we first estimated the start date of the incubation, nestling, and fledging periods for all Kirtland’s Warbler nests found in the Lower

Peninsula of Michigan (n = 308, 2017-2019) as part of this and a related study [61]. For nests found after incubation had already

begun, we backdated to determine the start date of incubation using the average incubation period length [3]. For nests found in

the fledgling period, we estimated the age of young to the nearest day using species-specific plumage characteristics (N.W.C.

et al., unpublished data) and then backdated to find the start of the nestling and incubation periods using those ages and the average

length of the incubation period. The mean start dates for the incubation, nestling, and fledgling periods varied non-significantly by 1-

2 d each year (all p > 0.05) and therefore, we pooled nests across all years to estimate average start dates for each period.

To estimate the time of day that each movement took place, we manually inspected all detection data. We could only definitively

determine the time of the movement when an individual was detected within the same day both at the area it departed from and the

area it moved to, which was the case for 20 of 62 (32%) movements. We calculated the time after sunrise for movements that took

place during the day, and we calculated the time after sunset and the time after nautical dusk for movements that took place at night

using package ‘‘suncalc’’ [59] in Program R [60]. For all remaining movements, the interval between detections at the two areas

spanned more than one day, and therefore we could only infer the time of day that the movement occurred by using the start and

end times for each movement. For these latter movements, it is possible that the start and end times only reflect the time when

the bird moved locally within the area and became available for detection by the tower and not the actual times of the long-distance

movement between towers.
e3 Current Biology 30, 1–7.e1–e3, October 19, 2020
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Normal Daily 
Movements (km) 

Average 
Alternate 

Movement (km) 

Maximum 
Alternate 

Movement (km) 

Relative Average 
Alternate 

Movement 

Relative Maximum 
Alternate 

Movement 

Kirtland's 
Warbler 0.15 19.4 77.3 130.1 517.9 

All other 
songbirds 
(n = 29) 

0.07 (0.04 - 0.10) 0.2 (0.1 - 0.9) 1.4  (0.4 - 2.4) 3.6  (2.0 - 7.2) 20.6 (4.5 - 37.6) 

Non-songbirds 
(n = 22) 5.02  (0.80 - 26.12) 14.7 (0.9 - 68.8) 33.5  (1.6 - 91.8) 2.8  (1.6 - 4.0) 3.2 (2.0 - 5.8) 

All other birds 
(n = 51) 0.12  (0.06 - 2.6) 0.7  (0.2 - 12.9) 1.7  (0.8 - 27.0) 3.1  (1.6 - 4.9) 6.9 (2.8 - 25.2) 

All mammals 
(n = 20) 1.40  (0.49 - 4.8) 4.6 (1.1 - 10.0) 8.6  (3.4 - 26.1) 2.9  (2.0 - 4.5) 6.2 (2.7 -  13.3) 

All other 
animals 
(n = 71) 

0.37  (0.07 - 4.28) 1.5 (0.3 - 10.2) 3.5  (1.0 - 27.0) 3.0  (1.8 - 4.6) 6.4 (2.7 -  20.6) 

Table S1. Summary movement distances for Kirtland’s Warblers and other groups. 

Related to Figure 2. 

The spatial extent of normal daily movements (e.g., territory or home range size, foraging 

distance) and average and maximum distances moved during forays or alternative space use. 

Average and maximum alternate distances are also shown in relation to normal daily movements 

to facilitate comparison across this diverse group of birds and mammals.  
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